Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

نویسندگان

  • Hyun-Suk Kim
  • Jac A. Nickoloff
  • Yuehan Wu
  • Elizabeth A. Williamson
  • Gurjit Singh Sidhu
  • Brian L. Reinert
  • Aruna S. Jaiswal
  • Gayathri Srinivasan
  • Bhavita Patel
  • Kimi Kong
  • Sandeep Burma
  • Suk-Hee Lee
  • Robert A. Hromas
چکیده

Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair

Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fo...

متن کامل

The homologous recombination component EEPD1 is required for genome stability in response to developmental stress of vertebrate embryogenesis

Stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR), initiated by nuclease cleavage of branched structures at stalled forks. We previously reported that the 5' nuclease EEPD1 is recruited to stressed replication forks, where it plays critical early roles in HR initiation by promoting fork cleavage and end resection. HR repair of stressed r...

متن کامل

EEPD1: Breaking and Rescuing the Replication Fork

The faithful duplication of an entire genome is a complex affair requiring the coordinated action of the DNA replisome to unwind and synthesize DNA at replication forks. Unfortunately, exposure to chemicals or radiation can damage DNA strands, and this damage can stall DNA replication forks, resulting in genome instability, tumorigenesis, or cell death. To rescue stalled replication forks, cell...

متن کامل

Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks.

The processing of stalled replication forks and the repair of collapsed replication forks are essential functions in all organisms. In fission yeast DNA junctions at stalled replication forks appear to be processed by either the Rqh1 DNA helicase or Mus81-Eme1 endonuclease. Accordingly, we show that the hypersensitivity to agents that cause replication fork stalling of mus81, eme1, and rqh1 mut...

متن کامل

Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5' flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5' flap structures and is involved in DNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2017